
Shared Virtual Memory

and

Generalized Speedup �

Xian-He Sun Jianping Zhu

ICASE NSF Engineering Research Center

Mail Stop 132C Dept. of Math. and Stat.

NASA Langley Research Center Mississippi State University

Hampton, VA 23681-0001 Mississippi State, MS 39762

Abstract

Generalized speedup is de�ned as parallel speed over sequential speed. In this pa-

per the generalized speedup and its relation with other existing performance metrics,

such as traditional speedup, e�ciency, scalability, etc., are carefully studied. In terms

of the introduced asymptotic speed, we show that the di�erence between the gener-

alized speedup and the traditional speedup lies in the de�nition of the e�ciency of

uniprocessor processing, which is a very important issue in shared virtual memory ma-

chines. A scienti�c application has been implemented on a KSR-1 parallel computer.

Experimental and theoretical results show that the generalized speedup is distinct from

the traditional speedup and provides a more reasonable measurement. In the study of

di�erent speedups, various causes of superlinear speedup are also presented.

�This research was supported by the National Aeronautics and Space Administration under NASA contract NAS1-

19480 while the �rst author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.



1 Introduction

In recent years parallel processing has enjoyed unprecedented attention from researchers, govern-

ment agencies, and industries. This attention is mainly due to the fact that, with the current circuit

technology, parallel processing seems to be the only remaining way to achieve higher performance.

However, while various parallel computers and algorithms have been developed, their performance

evaluation is still elusive. In fact, the more advanced the hardware and software, the more di�cult

it is to evaluate the parallel performance. In this paper we target recent development of shared

virtual memory machines and revisit the generalized speedup [17] performance metric.

Distributed-memory parallel computers dominate today's parallel computing arena. These ma-

chines, such as the Kendall Square KSR-1, Intel Paragon, and TMC CM-5, have successfully

delivered high performance computing power for solving certain of the so-called \grand-challenge"

problems. From the viewpoint of processes, there are two basic process synchronization and com-

munication models. One is the shared-memory model in which processes communicate through

shared variables. The other is the message-passing model in which processes communicate through

explicit message passing. The shared-memory model provides a sequential program paradigm.

With shared virtual address space, the shared-memory model supports shared virtual memory, but

requires sophisticated hardware and system support. An example of a distributed-memory ma-

chine which supports shared virtual address space is the Kendall Square KSR-1. Traditionally, the

message-passing model is bounded by the local memory of the processing processors. With recent

technology advancement, the message-passing model has extended the ability to support shared

virtual memory. Shared virtual memory simpli�es the software development and porting process by

enabling even extremely large programs to run on a single processor before being partitioned and

distributed across multiple processors. However, the memory access of the shared virtual memory

is non-uniform [8]. The access time of local memory and remote memory is di�erent. Running

a large program on a small number of processors is possible but could be very ine�cient. The

ine�cient sequential processing will lead to a misleading high performance in terms of speedup or

e�ciency.

Generalized speedup, de�ned as parallel speed over sequential speed, is a new performance

metric proposed in [17]. In this paper, we revisit generalized speedup and address the measurement

issues. Through both theoretical proofs and experimental results, we show that generalized speedup

provides a more reasonable measurement than traditional speedup. In the process of studying

generalized speedup, the relation between the generalized speedup and many other metrics, such as

e�ciency, scaled speedup, scalability, are also studied. Various reasons for superlinearity in di�erent

speedups are also discussed. Results show that the main di�erence between the traditional speedup

and the generalized speedup is how to evaluate the e�ciency of the sequential processing on a single

processor.

1



The paper is organized as follows. In section 2 we study traditional speedup, including the

scaled speedup concept, and introduce some terminology. Analysis shows that the traditional

speedup, �xed-size or scaled size, may achieve superlinearity on shared virtual memory machines.

Furthermore, with the traditional speedup metric, the slower the remote memory access is, the

larger the speedup. Generalized speedup is studied in Section 3. The term asymptotic speed is

introduced for the measurement of generalized speedup. Analysis shows the di�erences and the

similarities between the generalized speedup and the traditional speedup. E�ciency and scalability

issues are also discussed. Experimental results of a production application on a Kendall Square

KSR-1 parallel computer are given in Section 4. Section 5 contains a summary.

2 The Traditional Speedup

One of the best accepted and the most frequently used performance metrics in parallel processing

is speedup. It measures the parallel processing gain over sequential processing and is de�ned as

sequential execution time over parallel execution time. Parallel algorithms often exploit parallelism

by sacri�cing mathematical e�ciency. To measure the true parallel processing gain, the sequential

execution time should be based on a commonly used sequential algorithm. To distinguish it from

other interpretations of speedup, the speedup measured with a commonly used sequential algorithm

has been called absolute speedup [14]. Absolute speedup is an important metric, especially when

new parallel algorithms are introduced. Another widely used interpretation is the relative speedup

[14], which uses the uniprocessor execution time of the parallel algorithm as the sequential time.

There are several reasons to use the relative speedup. First, the performance of an algorithm varies

with the number of processors. Relative speedup measures the variation. Second, relative speedup

avoids the di�culty of choosing the practical sequential algorithm, implementing the sequential

algorithm, and matching the implementation/programming skill between the sequential algorithm

and the parallel algorithm. Also, when problem size is �xed, the time ratio of the chosen sequential

algorithm and the uniprocessor execution of the parallel algorithm is �xed. Therefore, the relative

speedup is proportional to the absolute speedup. Relative speedup is the speedup commonly used

in performance study. The well known Amdahl's law [1] and Gustafson's scaled speedup [4] are

both based on relative speedup. In this study we will focus on relative speedup and reserve the

terms traditional speedup and speedup for relative speedup. The concepts and results of this study

can be extended to absolute speedup.

The absolute speedup and the relative speedup are distinguished by the sequential algorithm.

After a sequential algorithm is chosen, from the problem size point of view, speedup can be further

divided into the �xed-size speedup and the scaled speedup. Fixed-size speedup emphasizes how much

execution time can be reduced with parallel processing. Amdahl's law is based on the �xed-size

speedup. With one parameter, the sequential processing ratio, Amdahl's law gives the limitation of

2



the �xed-size speedup. The scaled speedup is concentrated on exploring the computational power

of parallel computers for solving otherwise intractable large problems. Depending on the scaling

restrictions of the problem size, the scaled speedup can be classi�ed as the �xed-time speedup and

the memory-bounded speedup [18]. When p processors are used, �xed-time speedup scales problem

size to meet the �xed execution time. Then the scaled problem is also solved on an uniprocessor to

get the speedup. Corresponding to Amdahl's law, Gustafson has given a simple �xed-time speedup

formula [5]. The memory-bounded speedup [18] is another practically used scaled speedup. It is

de�ned in a similar way to the �xed-time speedup. The di�erence is that in memory-bounded

speedup the problem size is scaled based on the available memory, while in �xed-time speedup the

problem size is scaled up to meet the �xed execution time. A detailed study of the memory-bounded

speedup can be found in [18].

Speedup can also be classi�ed based on the achieved performance. Let p and Sp be the number

of processors and the speedup with p processors. The following terms were used in [7].

De�nition 1

� Super-linear speedup: limp!1

Sp
p =1

� Linear super-unitary speedup: p < Sp < c � p for some constant c > 1.

� Unitary speedup: Sp = p.

� Linear sub-unitary speedup: � � p < Sp < p for some positive constant � < 1.

� Sub-linear speedup: limp!1

Sp
p = 0.

We say a speedup is a superlinear speedup if it is either super-linear or linear super-unitary. It

is debatable if any machine-algorithm pair can achieve \truly" superlinear speedup. Four possible

causes of superlinear speedup given in [7] are listed in Fig. 1.

1. cache size increased in parallel processing

2. overhead reduced in parallel processing

3. latency hidden in parallel processing

4. Randomized algorithms

Figure 1. Causes of Superlinear Speedup: part 1

Cause 2 in Fig. 1 can be considered theoretically [15], there is no measured superlinear speedup

ever attributed to it. Cause 3 does not exist for relative speedup since both the sequential and

3



parallel execution use the same algorithm. Cause 1 is unlikely applicable for scaled speedup, since

when problem size scales up, by memory or by time constraint, the cache hit ratio is unlikely to

increase. Two other causes of superlinear relative speedup and scaled speedup are listed in Fig. 2.

5. mathematical ine�ciency of the serial algorithm

6. higher memory access latency in the sequential processing

Figure 2. Causes of Superlinear Speedup: part 2

Since parallel algorithms are often mathematically ine�cient, cause 5 is a likely source of su-

perlinear speedup of relative speedup. A good example of superlinear speedup based on 5 can be

found in [13].

With the virtual memory and shared virtual memory architecture, cause 6 can lead to an

extremely high speedup, especially for scaled speedup where an extremely large problem has to be

run on a single processor. Figure 7 shows a measured superlinear speedup on a KSR-1 machine.

The measured superlinear speedup is due to the inherent de�ciency of the traditional speedup

metric.

To analyze the de�ciency of the traditional speedup, we need to introduce the following de�ni-

tion.

De�nition 2 The cost of parallelism i is the ratio of the total number of processor cycles consumed

in order to perform one unit operation of work when i processors are active to the machine clock

rate.

The sequential execution time can be written in terms of work:

Sequential execution time = Amount of work �Processor cycles per unit of work

Machine clock rate
: (1)

The ratio in the right hand side of Eq. (1), processor cycles per unit of work over machine clock

rate, is the cost of sequential processing.

Work can be de�ned as arithmetic operations, instructions, transitions, or whatever is needed to

complete the application. In scienti�c computing the number of 
oating-point operations (FLOPS)

is commonly used to measure work. In general, work may be of di�erent types, and units of di�erent

operations may require di�erent numbers of instruction cycles to �nish. (For example, the times

consumed by one division and one multiplication may be di�erent depending on the underlying

machine, and operation and memory reference ratio may be di�erent for di�erent computations.)

The in
uence of work type on the performance is one of the topics studied in [17]. In this paper,

4



we study the in
uence of ine�cient memory access on the performance. We assume that there is

only one work type and that any increase in the number of processor cycles is due to ine�cient

memory access.

In a shared virtual memory environment, the memory available depends on the system size. Let

Wi be the amount of work executed when i processors are active, and let W =
Pp

i=1Wi represent

the total work. The cost of parallelism i in a p processor system, denoted as cp(i;W ), is the elapsed

time for one unit operation of work when i processors are active. Then, Wi � cp(i;W ) gives the

accumulated elapsed time where i processors are active. cp(i;W ) contains both computation time

and remote memory access time.

The uniprocessor execution time can be represented in terms of uniprocessor cost.

t(1) =

pX
i=1

Wi � cp(s;W );

where cp(s;W ) is the cost of sequential processing on a parallel system with p processors. It is

di�erent from cp(1;W ) which is the cost of the sequential portion of the parallel processing. Parallel

execution time can be represented in terms of parallel cost,

t(p) =

pX
i=1

Wi

i
� cp(i;W ):

The traditional speedup is de�ned as

Sp =
t(1)

t(p)
=

Pp
i=1Wi � cp(s;W )Pp
i=1

Wi

i � cp(i;W )
: (2)

If cp(i;W ) = cp(p;W ), for 1 � i < p, then

Sp =
cp(s;W )

cp(p;W )
� WPp

i=1 :
Wi

i

: (3)

The �rst ratio of Eq. (3) is the cost ratio, which gives the in
uence of memory access delay. The

second ratio,

WPp
i=1

Wi

i

(4)

is the simple analytic model based on degree of parallelism [18]. It assumes that memory access

time is constant as problem size and system size vary. The cost ratio distinguishes the di�erent

performance analysis methods with or without consideration of the memory in
uence. In general,

cost ratio depends on memory miss ratio, page replacement policy, data reference pattern, etc. For

a simple case, if we assume there is no remote access in parallel processing and the remote access

ratio of the sequential processing is (p� 1)=p, then

5



cp(s;W )

cp(p;W )
=

1

p
+
p� 1

p
� time of per remote access

time of per local access
: (5)

Equation (5) approximately equals the time of per remote access over the time of per local access.

Since the remote memory access is much slower than the local memory access under the current

technology, the speedup given by Eq. (3) could be considerably larger than the simple analytic

model (4). In fact, the slower the remote access is, the larger the di�erence. For the KSR-1, the

time ratio of remote and local access is about 7.5 (see Section 4). Therefore, for p = 32, the cost

ratio is 7.3. For any W=
Pp

i=1
Wi

i > 0:14, under the assumed remote access ratio, we will have a

superlinear speedup.

3 The Generalized Speedup

While parallel computers are designed for solving large problems, a single processor of a parallel

computer is not designed to solve a very large problem. A uniprocessor does not have the computing

power that the parallel system has. While solving a small problem is inappropriate on a parallel

system, solving a large problem on a single processor is not appropriate either. To create a useful

comparison, we need a metric that can vary problem sizes for uniprocessor and multiple processors.

Generalized speedup [17] is one such metric.

Generalized Speedup =
Parallel Speed

Sequential Speed
: (6)

Speed is de�ned as the quotient of work and elapsed time. Parallel speed might be based on scaled

parallel work. Sequential speed might be based on the unscaled uniprocessor work. By de�nition,

generalized speedup measures the speed improvement of parallel processing over sequential pro-

cessing. In contrast, the traditional speedup (2) measures time reduction of parallel processing. If

the problem size (work) for both parallel and sequential processing are the same, the generalized

speedup is the same as the traditional speedup. From this point of view, the traditional speedup is

a special case of the generalized speedup. For this and for historical reasons, we sometimes call the

traditional speedup the speedup, and call the speedup given in Eq. (6) the generalized speedup.

Like the traditional speedup, the generalized speedup can also be further divided into �xed-

size, �xed-time, and memory-bounded speedup. Unlike the traditional speedup, for the generalized

speedup, the scaled problem is solved only on multiple processors. The �xed-time generalized

speedup is sizeup [17]. The �xed-time benchmark SLALOM [6] is based on sizeup.

If memory access time is �xed, one might always assume that the uniprocessor cost cp(s) will

be stablized after some initial decrease (due to initialization, loop overhead, etc.), assuming the

memory is large enough. When cache and remote memory access are considered, cost will increase

when a slower memory has to be accessed. Figure 3 depicts the typical cost changing pattern.

6



Fits in
Cache

Cost

Problem Size

Fits in Main Memory

Fits in Remote

Memory

Execution Time
Increases Sequential

Insufficient Memory

Figure 3. Cost Variation Pattern.

From Eq. (1), we can see that uniprocessor speed is the reciprocal of uniprocessor cost. When

the cost reaches its lowest value, the speed reaches its highest value. The uniprocessor speed cor-

responding to the stablized main memory cost is called the asymptotic speed (of uniprocessor).

Asymptotic speed represents the performance of the sequential processing with e�cient memory

access. The asymptotic speed is the appropriate sequential speed for Eq. (6). For memory-

bounded speedup, the appropriate memory bound is the largest problem size which can maintain

the asymptotic speed. After choosing the asymptotic speed as the sequential speed, the corre-

sponding asymptotic cost has only local access and is independent of the problem size. We use

c(s;W0) to denote the corresponding asymptotic cost, where W0 is a problem size which achieves

the asymptotic speed. If there is no remote access in parallel processing, as assumed in Section 2,

then c(s;W0)=cp(p;W0) = 1. By Eq. (3), the corresponding speedup equals the simple speedup

which does not consider the in
uence of memory access time. In general, parallel work W is not

the same as W0. So we have

Generalized Speedup =

WPp

i=1

Wi
i
�cp(i;W )

1
c(s;W0)

=
W � c(s;W0)Pp
i=1

Wi

i � cp(i;W )
: (7)

Equation (7) is another form of the generalized speedup. It is a quotient of sequential and parallel

time as is traditional speedup (2). The di�erence is that, in Eq. (7), the sequential time is based

on the asymptotic speed. When remote memory is needed for sequential processing, c(s;W0) is

smaller than cp(s;W ). Therefore, the generalized speedup gives a smaller speedup than traditional

speedup.

Parallel e�ciency is de�ned as

E�ciency =
speedup

number of processors
: (8)

7



The Generalized e�ciency can be de�ned similarly as

Generalized E�ciency =
generalized speedup

number of processors
: (9)

By de�nition,

E�ciency =
W � c(s;W )

p �Pp
i=1

Wi

i � cp(i;W )
(10)

and

Generalized E�ciency =
W � c(s;W0)

p �Pp
i=1

Wi

i � cp(i;W )
: (11)

Equations (10) and (11) show the di�erence between the two e�ciencies. The traditional e�ciency

assumes that the measured sequential processing achieves hundred percent e�ciency. The gen-

eralized e�ciency assumes that the sequential processing based on the asymptotic cost achieves

hundred percent e�ciency. Traditional speedup compares parallel processing with the measured

sequential processing. Generalized speedup compares parallel processing with the sequential pro-

cessing based on the asymptotic cost. From this point of view, generalized speedup is a reform of

traditional speedup. The following propositions are direct results of Eq.(7).

Proposition 1 If cp(s;W ) is independent of problem size, traditional speedup is the same as gen-

eralized speedup.

Proposition 2 If the parallel work, W , achieves the asymptotic speed, that is W = W0 , then the

�xed-size traditional speedup is the same as the �xed-size generalized speedup.

By Proposition 1, if the simple analytic model (4) is used to analyze performance, there is no

di�erence between the traditional and the generalized speedup. If the problem size W is larger

than the suggested initial problem size W0, then the single processor speedup S1 may not equal to

one. S1 measures the sequential ine�ciency due to the di�erence in memory access.

The generalized speedup is also closely related to the scalability study. Isospeed scalability

has been proposed recently in [19]. The isospeed scalability measures the ability of an algorithm-

machine combination maintaining the average (unit) speed, where the average speed is de�ned as

the speed over the number of processors. When the system size is increased, the problem size is

scaled up accordingly to maintain the average speed. If the average speed can be maintained, we

say the algorithm-machine combination is scalable and the scalability is

 (p; p0) =
p0W

pW 0

; (12)

where W 0 is the amount of work needed to maintain the average speed when the system size has

been changed from p to p0, and W is the problem size solved when p processors were used. By

8



de�nition

Average Speed =
W

p �Pp
i=1

Wi

i � cp(i;W )
:

Since the sequential cost is �xed in Eq. (11), �xing average speed is equivalent to �xing generalized

e�ciency. Therefore the isospeed scalability can be seen as the iso-generalized-e�ciency scalability.

When the memory in
uency is not consedered, i.e. cp(s;W ) is independent of the problem size, the

iso-generalized-e�ciency will be the same as the iso-traditional-e�ciency. In this case, the isospeed

scalability is the same as the isoe�ciency scalability proposed by Kumar [11, 8].

Proposition 3 If the sequential cost cp(s;W ) is independent of problem size or if the simple anal-

ysis model (4) is used for speedup, the isoe�ciency and isospeed scalability are equivalent to each

other.

The following theorem gives the relation between the scalability and the �xed-time speedup.

Theorem 1 Scalability (12) equals one if and only if the �xed-time generalized speedup is unitary.

Proof: Let c(s;W0); cp(i;W ), W , Wi be as de�ned in Eq. (7).

If scalability (12) equals 1, let W 0, p0 be as de�ned in Eq. (12) and de�ne W 0

i similarly as Wi,

we have
p0

W 0

=
p

W
; (13)

for any number of processors p and p0. By the de�nition of generalized speedup, generalized speedup

G Sp0 =
W 0 � c(s;W0)Pp0

i
W 0

i � cp0(i;W 0)
:

With some arithmetic manipulation, we have

W 0

p0
=
G Sp0

p0
�
Pp0

i
W 0

i � cp0(i;W 0)

c(s;W0)
:

Similarly, we have

W

p
=
G Sp

p
�
Pp

i
W
i � cp(i;W )

c(s;W0)
:

By Eq. (13) and the above two equations,

G Sp0

p0
�
Pp0

i
W 0

i � cp0(i;W 0)

c(s;W0)
=
G Sp

p
�
Pp

i
W
i � cp(i;W )

c(s;W0)
:

For �xed-time speedup
p0X
i

W 0

i
� cp0(i;W 0) =

pX
i

W

i
� cp(i;W ):

9



Thus,
G Sp0

p0
=
G Sp

p
:

For p = 1,

G Sp0 = p0 �G Sp: (14)

Equation (14) is the corresponding unitary speedup when G S1 is not equal to one. If the work W

equals W0, then G S1 = 1 and Eq. (14) becomes

G Sp0 = p0;

which is the unitary speedup de�ned in de�nition 1 .

If the �xed-time generalized speedup is unitary, then for any number of processors, p and p0,

and the corresponding problem sizes, W and W 0, where W 0 is the scaled problem size under the

�xed-time constraint, we have
W � c(s;W0)Pp
i
W
i � cp(i;W )

= p;

and
W 0 � c(s;W0)Pp0

i
W 0

i � cp0(i;W 0)
= p0:

Therefore,
W

p �Pp
i
W
i � cp(i;W )

=
W 0

p0 �Pp0

i
W 0

i � cp0(i;W 0)
:

The average speed is maintained. Also since

pX
i

W

i
� cp(i;W ) =

p0X
i

W 0

i
� cp0(i;W 0);

we have the equality
W

p
=
W 0

p0
:

The scalability (12) equals one. 2

The following theorem gives the relation between memory-bounded speedup and �xed-time

speedup. The theorem is for generalized speedup. However, based on Proposition 1, the result is

true for traditional speedup when uniprocessor cost is �xed or the simple analysis model is used.

Theorem 2 If problem size increases proportionally to the number of processors in memory-

bounded scaleup, then memory-bounded generalized speedup is unitary if and only if �xed-time

generalized speedup is unitary.

Proof: Let c(s;W0); cp(i;W ),W and Wi be as de�ned in Theorem 1. Let W 0; W � be the scaled

10



problem size of �xed-time and memory-bounded scaleup respectively, and W 0

i and W
�

i be de�ned

accordingly.

If memory-bounded speedup is unitary, we have

W � c(s;W0)Pp
i
W
i � cp(i;W )

= p;

and
W � � c(s;W0)Pp0

i
W �

i � cp0(i;W �)
= p0:

Combine the two equations, we have the equation

W

p �Pp
i
W
i � cp(i;W )

=
W �

p0 �Pp0

i
W �

i � cp0(i;W �)
: (15)

By assumption, W � is proportional to the number of processors available,

W � =
p0

p
�W: (16)

Substituting Eq. (16) into Eq. (15), we get the �xed-time equality:

p0X
i

W �

i
� cp0(i;W �) =

pX
i

W

i
� cp(i;W ): (17)

That is W 0 = W �, and the �xed-time generalized speedup is unitary.

If �xed-time speedup is unitary, then, following similar deductions as used for Eq. (15), we have

W

p �Pp
i
W
i � cp(i;W )

=
W 0

p0 �Pp0

i
W 0

i � cp0(i;W 0)
: (18)

Applying the �xed-time equality Eq. (17) to Eq. (18), we have the reduced equation

W 0 =
p0

p
�W: (19)

With the assumption Eq. (16), Eq. (19) leads to

W � = W 0;

and memory-bounded generalized speedup is unitary. 2

The following corollary is a direct result of Theorem 1 and Theorem 2.

Corollary 1 If work increases proportionally with the number of processors, then scalability (12)

11



equals one if and only if the memory-bounded generalized speedup is unitary.

Finally, to complete our discussion on the superlinear speedup, there is a new cause of super-

linearity for generalized speedup. The new source of superlinear speedup is called pro�le shifting

[6], and is due to the problem size di�erence between sequential and parallel processing. An ap-

plication may contain di�erent work types. While problem size increases, some work types may

increase faster than the others. When the work types with lower costs increase faster, superlinear

speedup may occur. A superlinear speedup due to pro�le shifting was studied in [6].

7. pro�le shifting

Figure 4. Causes of Superlinear Speedup: part 3

4 Experimental Results

In this section, we discuss the timing results for solving an application problem on KSR-1 parallel

computers. We �rst give brief descriptions of the architecture and the application problem, and

then present the timing results and analyses.

4.1 The Machine

The machine to be discussed here can be viewed as a combination of (or a compromise between)

the distributed and shared memory parallel architectures. Their hybrid is called the Shared Virtual

Memory architecture. A representative of this category is the new KSR-1 parallel computer from

Kendall Square Research. It has distributed physical memory which makes the system scalable to a

large number of processors, and a shared address space which provides users a shared-memory-like

programming environment.

Figure 5 shows the architecture of the KSR-1 parallel computer [9]. Each processor on the KSR-

1 has 32 Mbytes of local memory. The CPU is a super-scalar processor with a peak performance of

40 M
ops in double precision. Processors are organized into di�erent rings. The local ring (ring:0)

can connect up to 32 processors, and a higher level ring of rings (ring:1) can contain up to 34 local

rings with a maximum of 1088 processors.

If a non-local data element is needed, the local search engine (SE:0) will search the processors

in the local ring (ring:0). If the search engine SE:0 can not locate the data element within the local

ring, the request will be passed to the search engine at the next level (SE:1) to locate the data.

12



P M

M
P

ring:1
connecting up to 34 ring:0’s

M P

ring:0
connecting up

to 32 processers

ring:0 ring:0

Figure 5. Con�guration of KSR-1 parallel computers.

P : processor M : 32 Mbytes of local memory

This is done automatically by a hierarchy of search engines connected in a fat-tree-like structure

[9, 12]. The memory hierarchy of KSR-1 is shown in Fig. 6.

Each processor has 512 Kbytes of fast subcache which is similar to the normal cache on other

parallel computers. This subcache is divided into two equal parts: an instruction subcache and a

data subcache. The 32 Mbytes of local memory on each processor is called a local cache. A local

ring (ring:0) with up to 32 processors can have 1 Gbytes total of local cache which is called Group:0

cache. Access to the Group:0 cache is provided by Search Engine:0. Finally, a higher level ring

of rings (ring:1) connects up to 34 local rings with 34 Gbytes of total local cache which is called

Group:1 cache. Access to the Group:1 cache is provided by Search Engine:1. The entire memory

hierarchy is called ALLCACHE memory by the Kendall Square Research. Access by a processor

to the ALLCACHE memory system is accomplished by going through di�erent Search Engines as

shown in Fig. 6. The latencies for di�erent memory locations [10] are: 2 cycles for subcache, 20

cycles for local cache, 150 cycles for Group:0 cache, and 570 cycles for Group:1 cache.

4.2 The Application

Least squares problems are frequently encountered in scienti�c and engineering applications. The

major work of solving least squares problems is to solve the normal equation

A
T
Ax = A

T
b (20)

by orthogonal factorization schemes (Householder Transformations and Givens rotations). E�cient

Householder algorithms have been discussed in [3] for shared memory supercomputers, and in [16]

13



32 MB
Local Cache

1GB
Group:0 Cache

34 GB
Group:1 Cache

512 KB Subcache

Processor

Search Engine:0

Search Engine:1

Figure 6. Memory hierarchy of KSR-1.

for distributed memory parallel computers.

In many cases, for instance the inverse problem of partial di�erential equations [2], the nor-

mal equation system resulting from the discretization is too ill-conditioned to be solved directly.

Tikhnov's regularization method [20] is frequently used in this case to increase numerical stability.

The key step in this process is to introduce a regularization factor � > 0. Instead of solving (20)

directly, we solve the following system

(ATA + �I)x = A
T
b (21)

for x. Eq. (21) can also be written as

(AT ;
p
�I)

0
@ A
p
�I

1
Ax = (AT ;

p
�I)

0
@ b

0

1
A (22)

or

BTBx = BT

0
@ b

0

1
A ; (23)

14



so that the major task is to carry out the QR factorization for matrix B which has the structure

B =

2
6666666666666664

a
(1)
11 a

(1)
12 � � � a

(1)
1n

...
...

...
...

a
(1)

m1 a
(1)

m2 � � � a
(1)
mnp

�
p
�

. . .
p
�

3
7777777777777775

; (24)

where we usually have m � n with m of the same order as n. Matrix B is neither a complete full

matrix nor a sparse matrix. The upper part is full and the lower part is sparse (in diagonal form).

Because of the special structure in (24), not all elements in the matrix are a�ected in a particular

transformation step. In the �rst step, all elements within the frame in matrix (24) will be a�ected.

In each new step, the frame in (24) will shift downwards one row with the left most column out

of the game. Therefore, at the ith step, the submatrix Bi a�ected in the transformation has the

form:

Bi =

2
6666664

a
(i)
ii � � � � � � a

(i)
in

...
...

...
...

a
(i)
m+i�1;i � � � � � � a

(i)
m+i�1;np

� 0 � � � 0

3
7777775
: (25)

If the columns of matrix Bi of (25) are denoted by bij , i.e.

Bi = [bii b
i
i+1 � � �bin]; (26)

then the Householder Transformation can be described as:

15



Householder Transformation

Initialize matrix B

for i = 1, n

1: �i = �sign(a(i)ii )(bi
T

i b
i
i)
1=2

2: wi = b
i
i � �ie1

3: �j = w
T
i b

i
j(�

2
i � �ia(i)ii ); j = i+ 1; � � � ; n

4: bij = b
i
j � �jwi; j = i+ 1; � � �n

end for

The calculation of �j 's and updating of bij 's can be done in parallel for di�erent index j.

4.3 Timing Results

The numerical experiments reported here were conducted on the KSR-1 parallel computer installed

at the Cornell Theory Center. There are 128 processors altogether on the machine. During the

period when our experiments were performed, however the computer was con�gured as two stand-

alone machines with 64 processors each. Therefore, the numerical results were obtained using less

than 64 processors.

Figure 7 shows the traditional �xed-size speedup curves obtained by solving the regularized

least squares problem with di�erent matrix sizes n. The matrix is of dimensions 2n � n. We can

see clearly that as the matrix size n increases, the speedup is getting better and better. For the

case when n = 2048, the speedup is 76 on 56 processors. Although it is well known that on most

parallel computers, the speedup improves as the problem size increases, what is shown in Fig. 7 is

certainly too good to be a reasonable measurement of the real performance of the KSR-1.

The problem with the traditional speedup is that it is de�ned as the ratio of the sequential

time to the parallel time used for solving the same �xed-size problem. The complex memory

hierarchy on the KSR-1 makes the computational speed of a single processor highly dependent on

the problem size. When the problem is so big that not all data of the matrix can be put in the local

memory (32 Mbytes) of the single computing processor, part of the data must be put in the local

memory of other processors on the system. These data are accessed by the computing processor

through Search Engine:0. As a result, the computational speed on a single processor slows down

signi�cantly due to the high latency of Group:0 cache. The sustained computational speed on a

single processor is 5.5 M
ops, 4.5 M
ops and 2.7 M
ops for problem sizes 1024, 1600 and 2048

respectively. On the other hand, with multiple processors, most of the data needed are in the local

16



10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45 50 55

Speedup

Number of Processors

Ideal Speedup

n = 1024 �

� � �
�

�
� �

n = 1600
n = 2048 +

+
+

+

+

+

+

+

Figure 7. Fixed-size (Traditional) Speedup on KSR-1

memory of each processor, so the computational speed su�ers less from the high Group:0 cache

latency. Therefore, the excellent speedups shown in Fig. 7 are the results of signi�cant uniprocessor

performance degradation when a large problem is solved on a single processor.

Figure 8 shows the measured single processor speed as a function of problem size n. The House-

holder Transformation algorithm given before was implemented in KSR Fortran. The algorithm

has a numerical complexity of W = 2n3+8:5n2+26:5n, and the speed is calculated using s = W=t

where t is the CPU time used to �nish the computation.

As can be seen from Fig. 8, the three segments represent signi�cantly di�erent speeds for

di�erent matrix sizes. When the whole matrix can be �t into the subcache, the performance is

close to 7 M
ops. The speed decreases to around 5.5 M
ops when the matrix can not be �t into

the subcache, but still can be accommodated in the local cache. Note, however, when the matrix is

so big that access to Group:0 cache through Search Engine:0 is needed, the performance degrades

signi�cantly and there is no clear stable performance level as can be observed in the other two

segments. This is largely due to the high Group:0 cache latency and the contention for the Search

Engine which is used by all processors on the machine. Therefore, the access time of Group:0 cache

is less uniform as compared to that of the subcache and local cache.

To take the di�erence of single processing speeds for di�erent problem sizes into consideration,

we have to use the generalized speedup to measure the performance of multiple processors on

the KSR-1. As can be seen from the de�nition of Eq. (6), the generalized speedup is de�ned

as the ratio of the parallel speed to the asymptotic sequential speed, where the parallel speed is

17



0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Speed

Order of the Matrices

Subcache
All Cache

Remote Memory �

�
�

�

Figure 8. Speed Variation of Uniprocessor Processing on KSR-1

based on a scaled problem. In our numerical tests, the parallel problem was scaled in a memory-

bounded fashion as the number of processors increases. The initial problem was selected based

on the asymptotic speed (5.5 M
ops from Fig. 8) and then scaled proportionally according to the

number of processors, i.e. with p processors, the problem is scaled to a size that will �ll M � p

Mbytes of memory, where M is the memory required by the unscaled problem. Figure 9 shows

the comparisons of the traditional scaled speedup and the generalized speedup. For the traditional

scaled speedup, the scaled problem is solved on both one and p processors, and the value of the

speedup is calculated as the ratio of the time of one processor to that of p processors. While for

the generalized speedup, the scaled problem is solved only on multiple processors, not on a single

processor. The value of the speedup is calculated using Eq. (6), where the asymptotic speed is used

for the sequential speed. It is clear that Fig. 9 shows that the generalized speedup gives much more

reasonable performance measurement on KSR-1 than does the traditional scaled speedup. With

the traditional scaled speedup, the speedup is above 20 with only 10 processors. This excellent

superlinear speedup is a result of the severely degraded single processors speed, rather than the

perfect scalability of the machine and the algorithm.

5 Conclusion

Since the scaled up principle was proposed in 1988 by Gustafson and other researchers at Sandia

National Laboratory [5], the principle has been widely used in performance measurement of parallel

algorithms and architectures. One di�culty of measuring scaled speedup is that vary large problems

18



0

4

8

12

16

20

0 2 4 6 8 10

Speedup

Number of Processors

Ideal Speedup
Generalized Speedup �

� � � � �
�

�
�

Traditional Speedup

Figure 9. Comparison of Generalized and Traditional Speedup on KSR-1

have to be solved on uniprocessor, which is very ine�cient if virtual memory is supported, or is

impossible otherwise. To overcome this shortcoming, generalized speedup was proposed and studied

by Gustafson and Sun [17]. Generalized speedup is de�ned as parallel speed over sequential speed

and does not require solving large problems on uniprocessor. The study [17] emphasized the

�xed-time generalized speedup, sizeup. To meet the need of the emerging shared virtual memory

machines, the generalized speedup, particularly implementation issues, has been carefully studied

in the current research. It has shown that traditional speedup is a special case of generalized

speedup, and, on the other hand, generalized speedup is a reform of traditional speedup. The main

di�erence between generalized speedup and traditional speedup is how to de�ne the uniprocessor

e�ciency. When uniprocessor speed is �xed these two speedups are the same. Extending these

results to scalability study, we have found that the di�erence between isospeed scalability [19]

and isoe�ciency scalability [11] is also due to the uniprocessor e�ciency. When the uniprocessor

speed is independent of the problem size, these two proposed scalabilities are the same. As part of

the performance study, we have shown that an algorithm-machine combination achieves a perfect

scalability if and only if it achieves a perfect speedup. Seven causes of superlinear speedup are also

listed.

A scienti�c application has been implemented on a Kendall Square KSR-1 shared virtual mem-

ory machine. Experimental results show that uniprocessor e�ciency is an important issue for

virtual memory machines, and that the asymptotic speed provides a reasonable way to de�ne the

uniprocessor e�ciency.

The results in this paper on shared virtual memory can be extended to general parallel com-

19



puters. Since uniprocessor e�ciency is directly related to parallel execution time, scalability, and

benchmark evaluations, the range of applicability of the uniprocessor e�ciency study is wider than

speedups. The uniprocessor e�ciency might be explored further in a number of contexts.

Acknowledgement

The authors are grateful to the Cornell Theory Center for providing access to its KSR-1 parallel

computer.

References

[1] Amdahl, G. Validity of the single-processor approach to achieving large scale computing

capabilities. In Proc. AFIPS Conf. (1967), pp. 483{485.

[2] Chen, Y. M., Zhu, J. P., Chen, W. H., and Wasserman, M. L. GPST inversion

algorithm for history matching in 3-d 2-phase simulators. In IMACS Trans. on Scienti�c

Computing I (1989), pp. 369{374.

[3] Dongarra, J., Duff, I. S., Sorensen, D. C., and van der Vorst, H. A. Solving Linear

Systems on Vector and Shared Memory Computers. SIAM, Philadelphia, 1991.

[4] Gustafson, J. Reevaluating Amdahl's law. Communications of the ACM 31 (May 1988),

532{533.

[5] Gustafson, J., Montry, G., and Benner, R. Development of parallel methods for a

1024-processor hypercube. SIAM J. of Sci. and Stat. Computing 9, 4 (July 1988), 609{638.

[6] Gustafson, J., Rover, D., Elbert, S., and Carter, M. The design of a scalable, �xed-

time computer benchmark. J. of Parallel and Distributed Computing 12, 4 (1991), 388{401.

[7] Helmbold, D., and McDowell, C. Modeling speedup(n) greater than n. In Proc. of the

1989 Int'l Conf. on Parallel Processing, Vol. III (1989), pp. 219{225.

[8] Hwang, K. Advanced Computer Architecture: Parallelism, Scalability, Programmability.

McGraw-Hill Book Co., 1993.

[9] Kendall Square Research. KSR parallel programming. Waltham, USA, 1991.

[10] Kendall Square Research. KSR technical summary. Waltham, USA, 1991.

[11] Kumar, V., and Gupta, A. Analysis of scalability of parallel algorithms and architectures:

A survey. In Proc. of 1991 Int'l Conf. on Supercomputing (June 1991), pp. 396{405.

[12] Leiserson, C. Fat-trees: Universal networks for hardware-e�cient supercomputing. IEEE

Transactions on Computing 34, 10 (1985), 892{901.

[13] Nicol, D. In
ated speedups in parallel simulations via malloc(). International Journal on

Simulation 2 (Dec. 1992), 413{426.

[14] Ortega, J., and Voigt, R. Solution of partial di�erential equations on vector and parallel

computers. SIAM Review (June 1985), 149{240.

20



[15] Parkinson, D. Parallel e�ciency can be greater than unity. Parallel Computing 3 (1986),

261{262.

[16] Pothen, A., and Raghavan, P. Distributed orthogonal factorization: Givens and House-

holder algorithms. SIAM J. of Sci. and Stat. Computing 10 (1989), 1113{1135.

[17] Sun, X.-H., and Gustafson, J. Toward a better parallel performance metric. Parallel

Computing 17 (Dec 1991), 1093{1109.

[18] Sun, X.-H., and Ni, L. Scalable problems and memory-bounded speedup. J. of Parallel and

Distributed Computing 19 (Sept. 1993), 27{37.

[19] Sun, X.-H., and Rover, D. Scalability of parallel algorithm-machine combinations. IEEE

Transactions on Parallel and Distributed Systems (1994). to appear.

[20] Tikhnov, A. N., and Arsenin, V. Solution of Ill-posed Problems. John Wiley and Sons,

1977.

21


